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Abstract. The fermionic Chern–Simons approach has had remarkable success in the description
of quantum Hall states at even-denominator filling fractionsν = 1/2m. In this paper we review
a number of recent works concerned with modelling this state as a Landau–Silin Fermi liquid.
We will then focus on one particular problem with constructing such a Landau theory that
becomes apparent in the limit of high magnetic field, or equivalently the limit of small electron
band massmb. In this limit, the static response of electrons to a spatially varying magnetic
field is largely determined by kinetic energy considerations. We then remedy this problem by
attaching an orbital magnetization to each fermion to separate the current into magnetization and
transport contributions, associated with the cyclotron and guiding centre motions respectively.
This leads us to a description of theν = 1/2m state as a Fermi liquid of magnetized composite
fermions which correctly predicts themb-dependence of the static and dynamic response in the
limit mb → 0. As an aside, we derive a sum rule for the Fermi liquid coefficients for the
Chern–Simons Fermi liquid. This paper is intended to be readable by people who may not be
completely familiar with this field.

1. Introduction

The Chern–Simons (or ‘composite’) fermion theory has had a number of remarkable
successes in the description of quantum Hall states [1, 2]. Based on the work of Jain [3], and
Zhang, Hansson, and Kivelson [4], the Chern–Simons fermion picture was first introduced
by Lopez and Fradkin [5] to study incompressible fractional quantized Hall states. Later,
in work by Halperin, Lee and Read (HLR) [1], as well as Kalmeyer and Zhang [6], the
theory was used to study even-denominator filling fractions. A prediction of this approach
is that the states at even-denominator filling fraction should be compressible Fermi-liquid-
like states. However, several major problems have appeared in describing these states as
Fermi liquids. Many of these problems are related to the infra-red divergent properties of
the Chern–Simons gauge-field fluctuations [1, 7, 8, 9, 10]. Recently, it has been pointed
out that there are also complications that are unrelated to infra-red properties [11]. These
complications become most pronounced in the limit of large magnetic field (or equivalently
when the electron band massmb is taken to zero). A resolution to themb → 0 problems has
been proposed in reference [11] which involves binding of magnetization (unrelated to spin)
to each Chern–Simons quasiparticle. The resulting magnetized Fermi liquid description of
even-denominator Hall states yields the correct behaviour in themb → 0 limit.

The current paper is written mainly to make the work of reference [11] more accessible
to those who are not experts in the field. Thus, much background material will be discussed
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in detail. In section 2 a brief review is given of previous works relating to the Chern–
Simons fermionic picture of fractional Hall states. We begin by reminding the reader of
a few essentials of quantum Hall physics in section 2.1. In section 2.2 the basic Chern–
Simons transformation is described in detail and in section 2.3 the Chern–Simons mean-field
description of both the incompressible fractional Hall states and the compressible even-
denominator states is discussed. Section 2.4 is devoted to a brief review of several of the
attempts to perform a controlled perturbation theory around this mean-field solution. We
will also briefly mention some of the works that focus on the infra-red divergences related
to the gauge-field fluctuations.

In section 2.5 we define and discuss the electromagnetic response functionsK and
related response functions which are the objects that we will attempt to calculate throughout
the rest of the paper. The simplest and most commonly used approximation (beyond mean
field) for calculating these response functions is the random-phase approximation (RPA).
This approximation will be discussed in section 2.6. It is pointed out that this approximation
either breaks Galilean invariance or incorrectly describes the energy scale of the low-energy
excitations. We then discuss how this problem is corrected by using the modified RPA
(MRPA) from reference [13].

In section 3 we discuss the physics of the large-magnetic-field (ormb → 0) limit. In
particular, in section 3.1 we focus on the zero-frequency, finite-wavevector electromagnetic
response in this limit. We show that the (M)RPA incorrectly models some features of
this response. In section 3.2 we propose that these problems can be repaired by binding
magnetization to each Chern–Simons quasiparticle. In essence, this binding allows for a
separation of the current into a magnetization current which is associated with the cyclotron
motion of electrons and a transport current associated with the guiding centre motion.
Following reference [11], in section 3.3 a ‘magnetized modified RPA’ (M2RPA) is defined
that uses this magnetization binding approach in combination with the MRPA to calculate
the physical electromagnetic response functionK.

Section 4 is devoted to describing how this attachment of magnetization (and the
M2RPA) fits into a Landau Fermi liquid theory formalism. In particular a new response
function (5̃) is defined that will give the self-consistent response for the magnetized
quasiparticles. Section 4.1 reviews Fermi liquid theory and defines the Boltzmann equation
that yields this response function as its solution. In section 4.2 we separate out the effects
of the Fermi liquid coefficients that are singular in the limitmb → 0. What remains after
this separation is then a Fermi liquid with reasonably weak interactions. In section 4.3 we
show that approximating the response of this Fermi liquid as the response of appropriate
free fermions is precisely equivalent to the M2RPA. Finally in section 5 we make a few
additional comments and summarize our findings. As an aside, in appendix A, a sum rule
is derived for the Fermi liquid coefficients in the Chern–Simons Fermi liquid.

2. Review

2.1. Basics

We begin by considering a system ofN interacting spin-polarized (or spinless) electrons of
band massmb in a magnetic fieldB = ∇ × A. The Hamiltonian for this system is written
as

H =
∑

j

[
pj − (e/c)A(rj )

]2

2mb

+
∑
i<j

v(ri − rj ) (1)
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wherev is the two-body interaction potential,c is the speed of light ande is the charge
of the electron. We will often specialize to the physical case of Coulombic interaction
v(r) = e2/(εr) with ε the background dielectric function. However, it will also be useful
at times to consider other forms of electron–electron interaction.

Ignoring interactions between the electrons, the single-particle spectrum breaks up into
Landau levels with energyEn = h̄ωc(n + 1

2) where

ωc = eB

mbc
(2)

is the cyclotron frequency. Each such Landau band has a degeneracy ofB/φ0 per unit area
where

φ0 = 2πh̄c

e
(3)

is the flux quantum. The filling fraction

ν = φ0ne

B
(4)

where is thene the electron density thus gives the number of Landau levels completely
filled. Note that when an integer number of Landau bands are completely filled (i.e.,ν is
an integer), there is a discontinuity in the chemical potential leading to an incompressible
integer quantized Hall state [12].

Whenν is a fraction (particularly forν < 1), due to the degeneracy of single-particle
states, the physics is controlled by the inter-electron interaction. We note that the interaction
energy scale is given byv(l0) wherel0 = √

φ0/(2πB) is the magnetic length. In the large-
magnetic-field limit (or equivalently whenmb → 0), the interaction energy scale is much
less than the cyclotron scale. However, due to the large degeneracy of states, traditional
perturbation methods in terms of the interactionv are not effective forν < 1. In order to
understand this regime, we will use the Chern–Simons transformation described below.

2.2. Chern–Simons transformation

Writing the electron wavefunction8(z1, z2, . . . , zN) with zj = xj + iyj the position of the
j th electron, it can be shown that [5, 1] if8 is a solution of the Schrödinger equation
H8 = E8, then form an integer,

9(z1, z2, . . . , zN) =
∏
i<j

[
(zi − zj )

|zi − zj |
]2m

8(z1, z2, . . . , zN) (5)

is a solution to the Schrödinger equationH ′9 = E9 with

H ′ =
∑

j

[
pj − (e/c)A(rj ) + (e/c)a(rj )

]2

2mb

+
∑
i<j

v(ri − rj ) (6)

the Hamiltonian forN interacting fermions wherea is the ‘Chern–Simons’ vector potential

a(r) = φ̃φ0

2π

N∑
j=1

ẑ × (r − rj )

|r − rj |2 (7)

and φ̃ = 2m. The Chern–Simons magnetic fieldb(r) associated with the vector potential
a is given by

b(r) = ∇ × a(r) = φ̃φ0

N∑
j=1

δ(r − rj ) = n(r)φ̃φ0 (8)
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wheren(r) is the local particle density. In other words, the Chern–Simons transformation
can be described as the exact modelling of an electron as a fermion attached toφ̃ = 2m

flux quanta. We call these fermions ‘gauge-transformed’, ‘composite’, or ‘Chern–Simons’
fermions†.

2.3. Mean-field theory

The simplest approach to analysing this system is to make the mean-field approximation
in which density is assumed uniform and the Chern–Simons flux quanta attached to the
fermions are smeared out into a uniform magnetic field of magnitude

〈b〉 = neφ̃φ0 (9)

with ne the average density, and̃φ = 2m again. Choosing the Chern–Simons flux to be
in the opposite direction to the applied magnetic field, at some special value of the filling
fraction, whenB = 〈b〉, the applied magnetic field precisely cancels the Chern–Simons flux
at the mean-field level. This exact cancellation occurs at the filling fraction

ν = neφ0

〈b〉 = 1

2m
. (10)

At these special filling fractions, the mean-field system can be described as fermions in
zero magnetic field, and should therefore be a compressible Fermi-liquid-like state. The
existence of this Fermi-liquid-like state at even-denominator filling fractions was predicted
by Kalmeyer and Zhang [6] and by Halperin, Lee, and Read [1]. It should be noted that
this mean-field description of theν = 1/2m state is a nondegenerate starting point for
attempting a controlled perturbation theory—unlike the original highly degenerate Landau
levels.

For completeness, we also consider the case where the filling fraction is away from
ν = 1/2m. Here, the applied magnetic field and the Chern–Simons flux do not cancel. At
the mean-field level, a residual field

1B = B − 〈b〉 = B − φ̃neφ0 = B − 2mneφ0 (11)

is left over. Thus, the mean-field system is described as noninteracting fermions in the
uniform field 1B. The effective filling fraction for these gauge-transformed fermions is
given by

p = neφ0

1B
. (12)

Whenp is a small integer, at the mean-field level, this is just a system of|p| filled Landau
levels of fermions, and one should observe the integer quantized Hall effect of transformed
fermions. Using equation (11) as well as the definition of the filling fraction (equation (4)),
this condition (equation (12)) yields precisely the Jain series [3] of fractional quantized Hall
states

ν = p

2mp + 1.
(13)

Thus, the fractional quantized Hall effect at these filling fractions is identified with an
integer quantized Hall effect of gauge-transformed fermions [5]. The excitation gaps for

† Note that term ‘composite fermion’ is used by Jain [3] in a somewhat different sense.
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these quantized Hall states are naturally given by the corresponding effective cyclotron
frequency of the composite fermions

Eg = h̄ 1ω∗
c = h̄e 1B

m∗
gap(ν)c

(14)

wherem∗
gap(ν) is an effective mass to be discussed further below.

2.4. Perturbative approaches

Although at a mean-field level, theν = 1/2m system looks like a Fermi liquid, we do not
expect such a simple mean-field approximation to accurately describe the system. Previous
attempts for going beyond mean-field theory have so far involved perturbative treatments
of the Chern–Simons and electrostatic interactions [1, 7–10, 13]. There are several major
difficulties in these approaches. To begin with, the ‘small’ dimensionless parameter that one
must use in the perturbation theory isφ̃ = 2m > 2 which is by no means small. So although
the mean-field solution seems like a good starting point for a controlled perturbation theory,
the remaining interactions are quite strong and are not in the perturbative regime.

Furthermore, even if̃φ were small there would still be problems with the perturbative
treatment of the Chern–Simons theory†. One problem that has attracted much attention arises
when the electrostatic interactionv(r) is of Coulomb form or is shorter ranged. If this is
the case, it is found that composite fermion’s effective mass at the Fermi surface diverges,
due to infra-red gauge-field fluctuations [1, 7, 8]. Although this divergence is reflected in
the energy gaps (see equation (14)) of fractional quantized Hall states atν = p/(2mp + 1)

(for largep) [7], the diverging effective mass is thought not to affect the electronic linear
response atν = 1/2m at zero temperature, due to a mutual cancellation with another
singular term [7–10]. Consequently [7] the low-energy excitations atν = 1/2m are best
characterized by another,finite, effective mass, denoted bym∗, which is the effective mass
of relevance to the present work. It is thism∗ which should determine the scale of the
fractional Hall gaps for small values ofp.

In order to avoid the complications associated with this divergence, we can consider in
this paper a system with interactions that are longer ranged than Coulomb such that there
are no infra-red divergences. (The long-range interaction suppresses density fluctuations
and hence kills the effects of the gauge field at long distances.) However, due to the above
mentioned cancellation of divergences in physical response functions [7–10], we believe
that the conclusions reached below will be independent of the range of the interaction.

In sections 3 and 4 below we will address a completely independent problem that
occurs in the limit ofmb → 0 (or equivalently for large magnetic fieldB). In this limit the
ground state and low-energy excitations are constrained to the lowest Landau level. This
led to restrictions on the electromagnetic response that are not properly described by simple
perturbative approaches. In section 2.5 below, we will define this response function, and in
section 2.6 we will describe the simplest approaches for going beyond mean field—the RPA
and MRPA approximations. Finally, in section 3 we will show why these approximations
are are insufficient in themb → 0 limit.

† Perturbing inφ̃ can be considered appropriate for the modelling of a system ofanyonswith statistical angleθ in
a magnetic fieldB = θnφ0/(2π) (here fermions are defined to have statistical angle 0 modulo 2π ). By similarly
attachingφ̃ = θ/π quanta of flux to each particle, we obtain a system that in mean-field theory is described as
fermions in zero field. This family of anyonic systems with differentθ -parameters presumably share many similar
properties. So long as no phase transitions occur betweenθ = 0 andθ = 2π , the properties of the composite
fermion system (θ = 2π or φ̃ = 2) should be qualitatively described by perturbation theory inφ̃.
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2.5. Response functions

The quantity that we will attempt to calculate is the electromagnetic response matrixKµν

which is closely related to the conductivity [1, 13] (see equations (20), (21), and (24) below).
To defineK, a weak vector potentialAext

µ is externally applied to a system at wavevectorq
and frequencyω, and consequently, a currentjµ is induced (hereA0 is the scalar potential,
andj0 is the induced density). We write the response function in the form

jµ(q, ω) = Kµν(q, ω)Aext
ν (q, ω) (15)

whereµ andν take the values 0, x, y. We will use the convention that the perturbation is
applied withq‖x̂ so that the longitudinal current isjx = (ω/q)j0. Using the gaugeAx = 0,
we can then treatKµν as a 2× 2 matrix with indices taking the values 0 or 1 denoting the
time or transverse space components. In this notation the current vectorjµ is (j0, jy), and
the vector potentialAµ is (A0, Ay). Note that from here on, we will routinely drop the
explicit matrix subscriptsµ andν as well as the explicitq- andω-dependences.

In systems with long-ranged Coulomb interactions, a densityj0(q) induced by the
external vector potential gives rise to an additional Coulomb scalar potentialev(q)j0(q),
wherev(q) = 2π/εq is the Fourier transform of the usual Coulomb interactionv(r) = 1/εr

(with ε the background dielectric constant). Similarly, for the Chern–Simons fermion theory
of theν = 1/2m state, in addition, an induced vector potential originates from the composite
fermions’ flux. An excess densityj0(q) carries an excess flux 2πφ̃j0(q) with φ̃ = 2m.
A composite fermions’ currentj(q) is a current of flux tubes, inducing an electric field
2πφ̃j(q). Thus, the composite fermions’ current induces also a vector potential. Keeping
a matrix notation, we may write the induced vector potential as

Aind = Uj (16)

where

U =
[

v(q) 0
0 0

]
+ 2πφ̃h̄

e

[
0 −i/q

i/q 0

]
(17)

where the first term is the Coulomb contribution and the second term is the Chern–Simons
contribution. (We have now dropped the explicitq- and ω-dependences as well as the
matrix subscripts in equation (16).)

Above, we have discussed the electromagnetic response functionK which gives the
current response to the externally applied vector potential. It is now useful to define another
response function5, which relates the currentjµ to the total vector potential†,

j = 5Atotal (18)

with

Atotal = Aext + Aind (19)

so that

K−1 = 5−1 + U. (20)

Thus5 is the part ofK that is irreducible with respect to both Coulomb and Chern–Simons
interactions.

† Our matrix5 is written asK̃ in references [1] and [13]. However, our notation for5 agrees with that used in
references [7], [8] and [11].
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The matrix 5 also defines the finite frequency and wavevector composite fermion
resistivity† ρcf via

ρcf = [T 5T ]−1 (21)

whereT is the conversion matrix

T =
[

i
√

iω/q 0
0 1/

√
iω

]
. (22)

The composite fermion resistivityρcf is the matrix that relates thêx- and ŷ-components
of the total (induced and external) electric fieldEtotal to the x̂- and ŷ-components of the
currentj via the 2× 2 matrix equation

Etotal = ρcf j (23)

whereEtotal is the electric field associated with the vector potentialAtotal. Equation (21)
simply converts5 to ρcf by using appropriate factors ofω andq to convertEtotal to Atotal,
andj0 to jx .

In terms of this composite fermion resistivity, the original electron resistivityρ (at finite
q andω) is given by [14, 6, 1]

ρ = ρcf + ρCS (24)

with

ρCS = 2πh̄φ̃

e2

[
0 1

−1 0

]
. (25)

2.6. RPA and modified RPA (MRPA)

In order to find the electromagnetic responseK at even a crude level, we must account for the
interactions (both Coulomb and Chern–Simons) beyond mean field. The simplest approach
to account for these interactions is the random-phase approximation (RPA). Making the
separation ofK into 5 andU as described above in equation (20), the RPA approximation
is equivalent to approximating5 as the responseK0 of noninteracting electrons of massmb

in the (mean) uniform magnetic field1B. Such an approximation was originally discussed
by Lopez and Fradkin for the Jain series of fractional quantized Hall states [5] and by
Halperin, Lee, and Read [1] and Kalmeyer and Zhang [6] for the even-denominator states.
In terms of resistivities, the RPA amounts to defining the composite fermion resistivityρcf

to be the resistivity for a system of free fermions with massmb.
As pointed out in reference [1], if one makes this RPA approximation and in the

calculation ofK0 one uses the bare band massmb, then, at least at mean-field level, it
is this mass that determines the scale of the low-energy excitations (i.e.,m∗

gap(ν) = mb

in equation (14)). Since the low-energy excitations should be controlled by the interaction
strength, this is clearly incorrect. Of course, if one could properly treat the fluctuations of
the gauge field, presumably the scale of the low-energy excitations would indeed be found
to be on the interaction scale‡. We note, however, that at the present no approximation
is known that properly achieves the low-energy excitation scale by including fluctuations.
Thus, a realistic approximation must have this low-energy excitation scale repaired by hand.

† In references [1] and [13]ρcf is calledρ̃.
‡ Note that in the Chern–Simons boson model of the fractional quantized Hall effect, properly treating the vortex
configurations of the superfluid, can be shown to give the low-energy excitations correctly on the interaction
scale [15].
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The simplest way to repair the problem of having low-energy excitations on the wrong
energy scale is to phenomenologically approximate5 as K0∗, the response of a system
of noninteracting electrons in the mean magnetic field1B with a new effective massm∗,
where m∗ is some phenomenological effective mass set by the interaction scale [1] (so
1/m∗ ∼ e2/(εl0)). For typical experimental parameters, the measured effective mass is
of the order of 4 to 15 times that of the bare band mass [1, 2]. Unfortunately, simply
replacingmb by m∗ leads to a theory with several serious problems. The strategy that we
will generally employ is to adopt this mass replacement, identify the resulting problems
and find ways to repair them phenomenologically. Once again we note that if we had a
way to properly treat the gauge-field fluctuations such that the low-energy excitations were
naturally on the interaction scale, we would not have the problems that we will discuss and
attempt to repair below.

To begin with, it can be shown that the naive replacement ofmb by m∗ results in a theory
that violates Galilean invariance [13]. In particular, Kohn’s theorem (a result of Galilean
invariance) requires that the only excitation mode with weight in the long-wavelength limit
is the cyclotron mode at frequencyωc = eB/mbc. This mode is a reflection of the oscillation
of the centre of mass of the entire system and must therefore be independent of interactions.
If one naively replacesmb by m∗, once ends up with a cyclotron mode instead at the
incorrect renormalized cyclotron frequencyeB/m∗c. Similarly, simply replacingmb by m∗

results in a violation of the so-called f-sum rule [13]. We will show later in section 3 that
this replacement of the band mass with the effective mass has a number of additional effects
that need to be properly treated before we obtain a fully viable phenomenological theory.

In reference [13] a Modified RPA (MRPA) was constructed that restores Galilean
invariance while keeping the low-energy excitations on the interaction scale. In this MRPA
approximation, the mass renormalization frommb to m∗ is compensated for by including a
Fermi liquid interaction coefficientF1 (this will be discussed further below). To define the
MRPA, we write

5−1 = [5∗]−1 + F1 (26)

F1 = (m∗−mb)

nee2

(
ω2/q2 0

0 −1

)
. (27)

The MRPA is then obtained by setting5∗ equal to the responseK0∗ of a system of
noninteracting fermions of massm∗ in the mean magnetic field1B. The response function
thus calculated (using5∗ = K0∗ and equations (26) and (20)) will be calledKMRPA. Note
that the form of equation (26) is similar to that of equation (20) in the sense that it separates
out the effect of an interaction term. Similarly to the case of the RPA approach of equation
(20), hereF1 is an effective interaction and5∗ is a response function calculated without the
interactionF1 included. Comparisons of results of exact diagonalizations of small systems
projected to the lowest Landau level to results ofK00 calculated in the MRPA were quite
favourable [16] for the low-energy excitations atν = p/(2mp + 1) for small p. Similar
comparisons atν = 1

2 also yielded favourable results for small systems [17]. Despite
these successes, we will show below that the (M)RPA does not properly represent the other
elements of the response matrix (K01, K10, andK11) in the limit of mb → 0.

3. Magnetized fermions

We now turn to consider the limit of small band massmb (or equivalently large magnetic
field B). The fact that, in this limit, the electronic ground state and low-energy excitations
are constrained to the lowest Landau level, leads to certain features of the electronic response
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to an external static vector potential which are not properly represented in approximation
schemes such as the mean field or the (M)RPA if we have used a renormalized massm∗

to achieve the correct energy scale for low-energy excitations. We note that this problem
occurs in the Chern–Simons theory even when gauge-field fluctuations are not infra-red
singular. (For example, if the electron–electron repulsion falls off more slowly than 1/r

there should be no infra-red divergences in the effective mass.)
In reference [11], a new approach is proposed that is based on a separation of the current

into a magnetization current which is associated with the cyclotron motion of electrons and
a transport current associated with the guiding centre motion. This separation is achieved
by attaching a magnetizationµM to each particle. This magnetization originates from the
electrons’ orbital motion and is unrelated to the spin (we have assumed spinless electrons
throughout this paper). In the limitmb → 0, the magnetizationµM is given by the Bohr
magneton

µb = eh̄

2mbc
. (28)

The proposed separation procedure combined with approximations similar to those made in
the MRPA results in an approximation that we call the M2RPA that yields response functions
that correctly describe themb → 0 limit.

3.1. Zero-frequency response

In this section we shall examine the form of the zero-frequency finite-wavevector response
in the high-magnetic-field (ormb → 0) limit. An acceptable approximation for calculating
the response of theν = 1/2m state must correctly predict this limit. We will show below
that the usual Chern–Simons approaches do not correctly predict this limit. We then discuss
in section 3.3 below how the magnetization attachment proposed in reference [11] corrects
this problem.

Consider theν = 1/2m state in the limitmb → 0. In this limit the gap between Landau
levels becomes large so we expect such a system to be restricted to the lowest Landau
level. If we apply a weak external static scalar potential at wavevectorq to the system, the
resulting state should remain in the lowest Landau level so the induced density fluctuation
should depend only on the interaction strength, and not on the bare massmb. Thus,K00,
the so-called density–density response, should be independent of the bare mass in this limit
(or more properly, should scale as(mb)

0 plus O(mb) corrections). However, the resulting
density inhomogeneity will yield a transverse current called the magnetization current, given
by (here and below the speed of lightc = 1)

jmag = ẑ × ∇M (29)

with M the magnetization density. For noninteracting particles in the lowest Landau level,
the kinetic energy density is

E ≡ M · B = 1

2
h̄ωcne (30)

so that the magnetization per particle is|M |/ne = µb, the Bohr magneton. More generally,
when interactions are taken into account, we let the magnetization per particle be given by
a quantityµM which must becomeµb in the mb → 0 limit where the system becomes
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projected to the lowest Landau level. We can thus write [18] the magnetization current as†
jmag = µM(ẑ × ∇n) (31)

with n(r) the local electron density. The physical interpretation of this magnetization current
is as follows. Each particle in the lowest Landau level can be thought of as a particle in
a cyclotron orbit. When the density of particles is uniform, the local currents of all of
these orbits cancel and there is no net current in the system. However, when there is a
density inhomogeneity, these local currents do not quite cancel and a net magnetization
current results. Note that this magnetization current associated with density gradients can
be modelled by imagining that a small magnetizationµM (equivalent to a current loop) is
attached to each quasiparticle.

Using equation (31) we see that in the limitmb → 0, when we apply the weak static
scalar potentialAext

0 (q) to the system and we look at the leading current response we find
a magnetization currentµbẑ × iqK00A

ext
0 . Thus, if q is finite we expect

lim
mb→0

K10/K00 = iqµb. (32)

This result is not contained in works based on the Chern–Simons approach previous to that
of reference [11].

We can also consider applying a weak external transverse vector potentialAext
1 at

wavevector q and zero frequency. This transverse field generates a magnetic field
δB = iqA1 at wavevectorq. The variation in the total magnetic fieldB(r) = B1/2 + δB(r)

will make the kinetic energy1
2h̄ωc(r) = µbB(r) positionally dependent thus attracting

electrons to the regions of minimal magnetic field whenmb → 0. This attraction is not
modelled in the Chern–Simons fermion picture at the mean-field or (M)RPA level if a
renormalized mass is used.

Formally, if the applied variation in magnetic field generates a density fluctuationj0(q),
we can write the energy cost as

δE = j0(δB)µM + 1

2
K00j

2
0 (33)

whereK00 is independent ofmb as discussed above. The first term here is just the change
in local cyclotron energy which can be thought of as an effective scalar potential for the
fermions. This term would occur quite naturally if we were to imagine that a magnetization
µM were attached to each fermion. The second term in equation (33) is due to the Coulomb
interactions within the lowest Landau level. Again note thatµM must becomeµb in the
mb → 0 limit, but more generally can include pieces on the interaction scale.

Minimizing the energy (equation (33)) with respect toj0 yields the density

j0 = −(δB)µmK00 = −iqµMK00A1 (34)

from which we conclude that that the leading term ofK01 is given by iqµMK00 (in
accordance with the symmetry requirement of the matrixK).

Finally, once we have determined the density fluctuation due to this local magnetic field
fluctuation, we again realize that this density fluctuation results in a magnetization current,
so we have a leading piece ofK11 given byK00q

2µ2
M.

† When projected to the lowest Landau level, the projected current and density operators satisfyP jP =
µb(ẑ × ∇P nP ) where P is the projection operator. In other words, for projected states, all of the current
is magnetization current.



Magnetized composite fermions 10137

3.2. Binding magnetization to composite fermions

As suggested by the above discussion, the necessary correction to the composite fermion
picture involves attaching a magnetizationµM to each composite fermion so that it properly
represents a particle in the lowest Landau level. Attaching magnetization to each particle can
also be interpreted as attaching a current loop to each particle associated with the electrons’
cyclotron motion. Thus the total current would include both a piece from the motion of the
particle–current loop composite and a piece from the current loop itself. To this end, we
define a transport current†

jtrans = jtotal − jmag (35)

which is the current of magnetized gauge-transformed fermions, whereas the magnetization
current, as discussed above (see equation (31)) is the current associated with the attached
current loops.

In addition, particles bound to magnetization should experience an effective potential
associated with any local changes in the magnetic field. Thus we define the effective scalar
potential

Aeff
0 = A0 + µM δB. (36)

This interaction of the bound magnetization with the magnetic field should be thought of
as the effective potential associated with the local change in the cyclotron energy.

If we keep the conventions that all perturbations are applied withq‖x̂, and use the
Coulomb gauge again, we can rewrite equations (35) and (36) as

jtotal = Mjtrans (37)

Aeff = M†A (38)

where

M =
[

1 0
iqµM 1

]
. (39)

In these equations, all currents are written as two vectors(j0, jy) and vector potentials are
written as two vectors (A0, Ay). The matrixM should be thought of as an operator that
attaches magnetization. As discussed above, in the limitmb → 0, we must haveµM → µb

in the matrixM, but more generally we can allow corrections on the interaction scale. In
the rest of this paper, however, we will focus on themb → 0 limit and considerµM = µb.

3.3. Magnetized modified RPA (M2RPA)

As discussed above, the (M)RPA approach does not properly model the magnetization
effects discussed in section 3.1. This error is presumably due to the fact that when we
take the mass-renormalized mean-field solution as a starting point for a perturbation theory
for the Chern–Simons fermions, we lose the fact that the original electrons travel in local
cyclotron orbits. In the approach discussed here [11], we will recover this physics by
artificially attaching magnetization to each particle by hand. This attachment is not an exact
transformation, but is rather a way of modelling behaviour that is lost when we take the
mean field as a starting point. However, as we will see below, within a Landau–Fermi liquid
theory picture, this attachment seems to give the correct quasiparticles for the system.

† The division intojtrans and jmag has some degree of arbitrariness. Note that the definitions in the present
paper allow for a nonzero transverse component ofjtrans in equilibrium for an inhomogeneous interacting electron
system.
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The magnetized particles have the same interactions (U ) as the particles in the traditional
Chern–Simons fermion picture. However, here, the magnetized fermions now respond to
the effective potential and the motion of these magnetized fermions yields only the transport
current response. We thus define a matrixK̃ to be thetransport current response of the
electrons to the externaleffectivepotential. In other words,

K = MK̃M†. (40)

The ‘magnetized modified RPA’ or M2RPA is then defined by setting̃K equal toKMRPA.
Thus we have

KM2RPA = MKMRPAM† = M([K0∗]−1 + F1 + U)−1M†. (41)

It should be noted that

KM2RPA
00 = KMRPA

00 (42)

and therefore the exact diagonalizations [16] that agreed well with calculations ofK00 in
the MRPA agree equally well with predictions of the M2RPA. However, the MRPA and
M2RPA differ at finiteq in their predictions for the other elements of the matrixK. For
example,

KM2RPA
10 = KMRPA

10 + iqµMKMRPA
00 . (43)

It should be noted however, that all finite-q experimental tests [2] of the Chern–Simons
theory to date have measured onlyK00 and therefore do not distinguish between the MRPA
and the M2RPA. As required, in the limitmb → 0, the M2RPA correctly describes the
static response properties described above. For example, equation (43) clearly satisfies
equation (32).

As is the case for the MRPA, we expect that the M2RPA, in addition to describing the
ν = 1/2m Fermi liquid states, should properly describe the Jain series of quantized states
ν = p/(2mp + 1) for small p. At large values ofp, in the case of Coulomb interactions,
the description should be modified to account for the effects of the singular infra-red gauge
fluctuations. In particular, the excitations at highq are sensitive to the infra-red divergence
of the effective mass due to the gauge-field fluctuations [7, 8] which are neglected in the
M2RPA.

4. Fermi liquid theory

We now turn to discussing how the M2RPA fits into the general picture of a Fermi liquid
theory of theν = 1/2m state. In essence, we will show that M2RPA roughly amounts to
adopting the Fermi liquid picture of reference [7] as describing the dynamics of magnetized
composite fermion quasiparticles rather than unmagnetized ones.

In Landau Fermi liquid theory for fermions with short-ranged interactions, such as3He,
the response functionK is given by the solution of a Landau–Boltzmann equation [19, 20]
which describes the dynamics of quasiparticles near the Fermi surface. In such an approach,
the quasiparticles are characterized by their effective mass,m∗, and by the Landau interaction
function,f (k, k′), describing theshort-rangeinteraction between quasiparticles of momenta
k andk′. In the case of3He, the quasiparticle effective mass is approximately three times
the bare mass, such that the quasiparticle is quite different from the original particle. In our
composite fermion system, our quasiparticle will not only have a renormalized mass, but
also a renormalized magnetization.

For fermions with long-ranged interactions [19, 20], the Silin extension of the Landau
theory asserts that it is the polarization5 that is described by the Landau–Boltzmann
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equation (see equation (20)) rather than the full responseK. In other words, equation (20)
separates out the Hartree part of the long-ranged interaction such that5 gives the
quasiparticle response to the sum of the external vector potential and the induced internal
vector potential. The Landau–Silin approach has been very successful for the description of
electrons in metals [19, 20, 21] (where there is only a long-ranged Coulomb interaction and
no Chern–Simons interaction). There,5 is calculated with a Boltzmann equation describing
the dynamics of quasiparticles of massm∗ interacting via aresidualshort-ranged interaction
f (k, k′). Here we will try to construct a similar Landau–Silin theory for the magnetized
quasiparticles in the Chern–Simons theory.

For the Chern–Simons theory, in addition to separating the long-ranged part of the
interactionU , for the magnetized fermions, further separation should be carried out to
remove the magnetization effects. To this end we define a response function5̃ by

5 = M5̃M†. (44)

By definition,5̃ relates the transport current of themagnetizedquasiparticles to theeffective
total vector potential, including both external and internally induced contributions (see
equations (37), (38) and (19)). For the Chern–Simons system it is5̃ which we claim
is given by a Landau–Boltzmann equation describing the dynamics of quasiparticles with
the finite effective massm∗ interacting via a residual short-ranged interactionf (k, k′).

4.1. Boltzmann transport

In the Chern–Simons Fermi liquid, as in traditional Fermi liquid theory, the (magnetized)
quasiparticles are characterized by their effective mass,m∗, and by the short-ranged Landau
interaction function,f (k, k′). Since|k| ≈ |k′| ≈ kF, wherekF is the Fermi momentum,f
is mostly† a function ofθ , the angle betweenk andk′. It is often more convenient to work
with the Fourier-transformed quantity

fl = 1

2π

∫ 2π

0
dθ f (θ)eilθ . (45)

Due to the symmetry of the interaction functionf (θ) = f (2π −θ) we expect thatfl = f−l .
In order to calculate the response function5̃, we keep with the convention that

the driving force F is applied with wavevectorq‖x̂, and at frequencyω (i.e., the
perturbation is proportional to eiqx−iωt ). Writing the fluctuations of the Fermi surface as
δn(p) = ν(θ) δ(|p|−pF) whereθ is the direction ofp on the Fermi surface‡, the Boltzmann
transport equation can be written as [19, 20, 21]

− iων(θ) + iqv∗
F cos(θ)[ν(θ) + δε1(θ)] = F · n̂(θ) (46)

wherev∗
F = pF/m∗ is the mass renormalized Fermi velocity,

δε1(θ) = m∗

(2πh̄)2

∫
dθ ′ f (θ − θ ′)ν(θ ′) (47)

and the directional vector is given by

n̂(θ) = (cosθ, sinθ). (48)

† In the case of Coulomb or shorter-ranged inter-electron interactions, perturbative approaches [7] find thatf

may have a singular dependence on|k|. One hopes that in a fully renormalized theory (nonperturbatively) these
singularities do not prevent us from writing a Boltzmann transport equation. We note that Kimet al [8] recently
showed that a form of quantum Boltzmann equation can be derived that is independent of these singularities.
‡ The definition ofν agrees with that in references [7], [19], and [20] but differs from the functionf used in
references [21] and [13] by a factor ofv∗

F.
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Equation (46) is just the usual Boltzmann equation of Fermi liquid theory. However, here
the driving force is given by the totaleffectiveelectric field

F = −eEtotal
eff = −e

(
∇Atotal

eff 0 − d

dt
Atotal

eff

)
. (49)

where (see equations (19) and (38))

Atotal
eff = M†Atotal. (50)

Once one has solved equation (46) forν(θ), The local charge density can be written as
the density of quasiparticles [19, 20, 21]

j0 = −epF

(2πh̄)2

∫
dθ ν(θ). (51)

Similarly, the motion of these magnetized quasiparticles gives the localtransport current
density

jtrans = 1

m∗

[ −ep2
F

(2πh̄)2

] ∫
dθ n̂(θ){ν(θ) + δε1(θ)} (52)

or

jtrans = 1

mb

[−ene

π

] ∫
dθ n̂(θ)ν(θ). (53)

Thus one can easily find the magnetized quasiparticle resistivity matrixρ̃cf relating the
effective electric field to the transport current via the 2× 2 matrix equation (cf. equation
(23))

Etotal
eff = ρ̃cf jtrans. (54)

The response matrix̃5 is then given by (cf. equation (21))

5̃ = [T ρ̃cf T ]−1. (55)

We now have a prescription for calculating the responseK of the Chern–Simons Fermi
liquid given the effective massm∗ and the interaction functionf (θ). To reiterate, the
prescription is to solve the Boltzmann equation (equation (46)) forν(θ) and calculate the
current using equation (52) to get the magnetized composite fermion resistivityρ̃cf . The
responseK can then be obtained by using equations (55), (44) and (20).

4.2. Separating singular Fermi liquid coefficients

As discussed above, one expects that the effective mass, which determines the energy scale
of the low-energy excitations, should be set by the Coulomb interaction scale. Similarly,
one expects [7] that the interaction functionf (θ) should be on the interaction scale (i.e.,
proportional to 1/m∗). However, two important restrictions onf yield pieces off that are
set by the larger scale 1/mb.

A well known result of Fermi liquid theory [19, 20] is that the Fermi liquid coefficients
f0 andf1 are fixed by the identities

1

mb

= 1

m∗ + f1

2πh̄2 (56)

dµ

dn
= 2πh̄2

m∗ + f0. (57)

The identity (56) is a result of Galilean invariance [19, 20]. (Note thatf1 refers to the first
Fourier mode of excitations of the Fermi surface which corresponds to a Galilean boost.)
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Thus,f1 is clearly on the larger scale 1/mb rather than the interaction scale. Furthermore,
we claim that the sum rule (57) fixesf0 to be on the scale 1/mb also. This counterintuitive
result is due to the fact that the compressibility derivative dµ/dn is taken at fixed1B.
One can understand this [7, 8] by realizing that the Fermi liquid theory uses the mean-field
zero-effective-field solution for its ground state. When a particle is added or subtracted, in
order to maintain a Fermi liquid (i.e., zero effective field), the external field must increased
by φ̃ flux quanta to compensate for the added Chern–Simons field. Thus, at fixed1B = 0,
the magnetic field is linked to the densityn via B = φ̃n80. In the limit mb → 0, the
interaction energy between the magnetizationM = µbn and the external field is given by

E = M · B = πφ̃h̄2n2

mb

. (58)

Of course this can also be thought of as the cyclotron energy. Differentiating this with
respect ton we obtain a magnetization contribution to the chemical potential

µmag = 2πφ̃h̄2n

mb

= h̄ωc (59)

such that the magnetization contributioñf0 to the zeroth Fermi liquid coefficientf0 is given
by

f̃0 = dµmag

dn
= 2πφ̃h̄2

mb

(60)

which is also the inverse compressibility of free electrons of massmb at constant1B. The
coefficientf0 is written asf0 = f̃0 + δf0 where f̃0 is O(m−1

b ) and δf0 is on the smaller
interaction scale. As mentioned in reference [7], in the limitmb → 0, the requirement
that the low-energy spectrum is independent ofmb forces the other interaction coefficients
(fl for l 6= 0, 1) to be on the interaction scale. In addition we note that using the Pauli
exclusion principle a sum rule can be derived for the remaining Fermi liquid coefficientsfl

for l 6= 0, 1. This sum rule is derived explicitly in appendix A.
Since in the limit ofmb → 0, f̃0 andf1 are on the bare mass scale whereas all other

coefficientsfl (as well asδf0) are expected to be on the smaller interaction scale, we will
separate out the contributions of these two coefficients by writing

5̃−1 = [5̃∗]−1 + F̃0 + F1 (61)

where

F̃0 =
(

f̃0 0
0 0

)
(62)

and F1 is given by equation (27). The functioñ5∗ is to be calculated using a Landau–
Boltzmann equation representing quasiparticles with the same effective massm∗ and
interaction coefficientsfl except thatf1 is artificially set to zero and the magnetic
contribution f̃0 is subtracted offf0. Once again, the form of equation (61) looks like
the form of equation (20) where we have separated two interaction terms and defined the
remaining responsẽ5∗ to be the response of a similar Fermi liquid with those interactions
removed. The separation of the coefficientf0, analogous to takingv(q) → v(q) + f0 in
equation (20), is justified by noting thatf0 corresponds to a short-ranged density–density
interaction. Similarly, the separation of the coefficientf1 is achieved by noting that thef1

coefficient corresponds to a current–current interaction (F1) which can similarly be added
on in equation (61). The separation of the nonzerof1 coefficient [13] is analogous to that
described in equation (26) (the coefficient of the matrix in equation (27) is proportional to
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f1) and is derived explicitly in reference [13]. Note that the separation of the effects of
Fermi liquid coefficients by treating them as density–density and current–current interactions
can only be done forf0 andf1 and not for anyfl for l > 1. Having made this separation,
we expect that the response5̃∗(q, ω) is independent ofmb in the limit mb → 0 and is well
behaved for all values ofq/mb. The transformation equations (20), (26), (27), (44), and
(61) do not in themselves involve any approximations, and may be considered simply as a
means of defining a new ‘irreducible’ response function5̃∗(q, ω).

4.3. Relation to theM2RPA

To relate this Fermi liquid approach to the M2RPA we note the identity

U + F̃0 = M†−1UM−1 (63)

which holds in the limitmb → 0. This identity is a statement of the fact that if you allow
the magnetization to see the Chern–Simons magnetic field as well as the external magnetic
field, then the 1/mb contribution tof0 will vanish since the magnetization now sees zero
magnetic field on average. We will also need

F̃0 = M†F̃0M (64)

which is just the statement that a density–density interaction does not care whether or not
the particles are magnetized. Using these identities, we find that M2RPA defined in equation
(41) is equivalent to approximating5∗ by K0∗, the response of a free Fermi gas of particles
of massm∗, and calculating the response using equations (20), (44), and (61).

We note that in Fermi liquid theory, the Landau–Boltzmann equation does not correctly
describe the Landau diamagnetic contribution to the transverse static response. Similarly,
we suspect that here the function5̃∗

11 derived from the Landau–Boltzmann equation lacks a
term of the formq2χ whereχ is some appropriate Landau susceptibility which we expect
to be on the scale of the interaction strength. As usual, if we fix the ratioω/q to be
nonzero, and takeq → 0, this diamagnetic term becomes negligible. However, when5̃∗

is approximated asK0∗ for the M2RPA, this diamagnetic contribution is included at least
approximately.

5. Further comments and conclusions

5.1. The effect of other Fermi liquid coefficients

Clearly, the M2RPA involves neglecting Fermi liquid coefficientsfl for l 6= 0, 1. Although
this formally violates the sum rule of appendix A, the neglect of these interaction terms
is probably quite reasonable. In previously studied Fermi liquid theories (helium-3 and
electrons in metals) although the first few Fermi liquid coefficients may be large, the higher
ones become rapidly smaller [20].

To elucidate the effects of additional nonzero Fermi liquid coefficients, we consider the
addition of a nonzero magnetic field1B. At the Jain series of filling fractionsp/(2mp + 1),
the composite fermions fill preciselyp Landau levels, resulting in fractionally quantized
states. The Boltzmann excitation spectrum for composite fermions for these states [13, 21]
is given by

ωn = n

(
1 + m∗fn

2πh̄2

)
1ω∗

c (65)
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where1ω∗
c = e 1B/m∗, andn is a positive integer. The residue (or weight) of thenth

excitation mode is proportional toq2n. Since only then = 1 mode has weight in the small-q

limit, this is the only mode that is altered by the Chern–Simons or Coulomb interactions
(equation (20)). Thus, the response spectrum (i.e., the location of poles ofK00) is identical
to the composite fermion spectrum predicted by equation (65) except that then = 1 mode
is pushed up to the cyclotron frequency (see equation (56)) as required by Kohn’s theorem
[5, 13].

The q → 0 spectrum shown by equation (65) would suggest that it would be very
easy to extract the value of the Fermi liquid coefficientsfl from the response of the
system. However, we point out that the spectrum predicted by the above Fermi liquid
theory (or by the MRPA and M2RPA) yields a spectrum of single-quasiparticle excitations
only. This single-particle excitation spectrum should be correct at low frequency, but at
higher frequency one can create multiple low-energy excitations. At least under some
conditions, at finite1B, these multiple excitations may have more weight than the single-
particle excitations in theq → 0 limit [22], making it more difficult to accurately extract
Fermi liquid coefficients directly from an excitation spectrum using equation (65).

5.2. Connection with other recent work

Using the M2RPA approach, we can calculate the responseK and hence5 (equation (20))
and hence the composite fermion conductivityσcf = [ρcf ]−1 via equation (21). This could
equivalently be calculated by using equations (61) and (44) along with the approximation
5̃∗ = K0∗ which, as discussed above, is equivalent to the M2RPA. Either approach yields
the limiting low-frequency and low-wavevector composite fermion Hall conductivity for
small mb

lim
q→0

lim
ω→0

[σcf ]xy = −
(

1

2φ̃

)(
e2

2πh̄

)
. (66)

For ν = 1
2, this is precisely half the value found in reference [23]in the opposite order

of limit and in the presence of disorder. Since these two results are for slightly different
cases, it is not clear that there is any contradiction. Reference [23] also calculates the above
order of limits for a clean system and finds it to be zero to first order in perturbation theory
in φ̃. Although the calculations described in reference [23] would be a natural direction
for attempting to understand this attachment, at lowest order the magnetization effects are
not seen. Once again this result does not directly contradict our work since it is only
perturbative. Note that our result, being inversely proportional toφ̃, may indicate why the
perturbative approach yields zero.

5.3. Possible relation to other pictures of quantum Hall states

Since much of our knowledge of quantum Hall states stems from the use of trial
wavefunctions [3, 12, 25], it is natural to try to make contact with these approaches.
Typically the trial wavefunctions are projected to the lowest Landau level which in some
senses can be thought of as themb → 0 limit†. Since the magnetization attachment described
in this paper is concerned with exactly this limit, it is interesting to see to what extent the
physics described in this paper matches the physics described by the trial wavefunctions.
Particularly interesting would be a comparison to the predictions of theν = 1

2 lowest Landau
level wavefunction constructed by Haldane [25].

† Note that projection andmb → 0 are not formally equivalent. See for example reference [24].
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5.4. Conclusions

The M2RPA describes theν = 1/2m state as a Fermi liquid of magnetized composite
fermions with a finite renormalized effective massm∗, anf1-parameter dictated by Galilean
invariance and anf0-parameter originating from the interaction of the magnetization with
the magnetic field. All remaining Fermi liquid parameters (which are expected to be on
the much smaller interaction scale) are neglected. The M2RPA predicts the sameK00 as
the MRPA, but in contrast it yields the correct behaviour forK01, K10, andK11 in the limit
mb → 0 for arbitrarily smallq.

By separating the pieces due to magnetization and due to singular Fermi liquid
coefficients (in themb → 0 limit) we identify a response functioñ5∗ that is represented
by the solution of a well behaved Landau–Boltzmann equation (up to diamagnetic terms).
Our claim that5̃∗ is well behaved in the limitmb → 0 we believe to be an exact statement
(although we have not proved it rigorously) independent of the approximation used to define
the M2RPA.
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Appendix A. The Fermi liquid sum rule

By using the Pauli exclusion principle for the forward-scattering amplitude, a sum rule can
be derived for the Landau coefficients for a Fermi liquid [26]. In two dimensions for a
spinless Fermi liquid, the form of this sum rule is (in this appendix ¯h = e = c = 1)

∞∑
l=−∞

fl

(2π/m∗) + fl

= 0. (A1)

In reference [27] this sum rule is generalized to the case of Landau–Silin Fermi liquid theory
for systems with long-ranged Coulomb interactions. In two dimensions, for a spinless Fermi
liquid with long-range interactions, the sum rule then becomes

∞∑
l = −∞

l 6=0

fl

(2π/m∗) + fl

= −1. (A2)

In this appendix we will derive the form of the sum rule in two dimensions for a spinless
two-dimensional Fermi liquid interacting via a long-ranged Chern–Simons gauge field as
well as via a direct ‘Coulomb’ interactionv(r). As much as possible, we will use the
notation of references [19] and [27]. In this derivation, we will assume for simplicity that
there are no complications due to infra-red divergent gauge-field fluctuations. This should
be rigorously true in the case where the interaction is longer ranged than the Coulomb
one. One hopes that in the case of Coulomb and shorter-ranged interactions, cancellation
of divergences similar to those found in the calculations of the electromagnetic response
[8, 9, 10] will lead to a fully renormalized theory that also obeys the sum rule derived
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here. Note that a formal derivation of the sum rule is given first, followed by a simple
phenomenological interpretation.

As in reference [27] we write the full vertex function00 in terms of ‘proper’ or
irreducible four-point functioñ0 by writing

00(p, p′; ω̄) = 00̃(p, p′; ω̄) + 3̃(p, ω̄)
[
1 − U(q)S̃(ω̄)

]−1
U(q)3̃(p′, ω̄) (A3)

wherep = (ω, k), p′ = (ω′, k′) and ω̄ = (ε, q) = p′ − p. Note that all three vectors
will be arranged such that the zeroth element of the vectorp is the frequency element
(this differs from the notation of references [19] and [27]). Here, the three-vector3̃ is the
proper three-point vertex function, and the three-by-three matrixS̃ is the proper polarization
propagator. Also, we have the interaction matrix

U(q) = −i

2π

(
v(q) 0 ic(q)

0 0 0

−ic(q) 0 0

) (A4)

with c(q) = 2πφ̃/q the Chern–Simons gauge interaction [1], andv(q) the direct Coulomb
interaction. As mentioned above, although the physical case isv(q) = 2π/(εq), we may
want to consider other functional forms. Note that the zeroth row and column of the matrix
U represent the interactions of the density whereas the first and second row and column
represent the longitudinal and transverse current respectively. Equation (A3) is shown
diagrammatically in figure A1.
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00(p, p′; ω̄) = 00̃(p, p′; ω̄) + Self Consistent Field Terms

Figure A1. Separation of the four-point function00 into its irreducible part00̃ and self-
consistent-field interaction contributions. This is the diagrammatic representation of equation
(A3). Here the dotted line is the interaction propagatorU that includes both Coulomb and
Chern–Simons terms.

The Landau interaction function for a Landau–Silin Fermi liquid theory is given in terms
of the proper four-point function by [19, 27]

f (k, k′) = 2π izkzk′ lim
q/ε→0

lim
ω̄→0

00̃(p, p′; ω̄) (A5)

or

f (k, k′) = 2π izkzk′ 00̃0(k, k′) (A6)

wherek andk′ are taken on the Fermi surface, andzk is the quasiparticle renormalization.
The Pauli principle, on the other hand, dictates that [27]

lim
ω̄→0

0
lim

(q/ε)→∞
0(p, p′; p − p′) =0 0∞(k, k′) = 0. (A7)
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Applying the same limits to equation (A3) we obtain

00̃∞(k, k) = lim
ω̄→0

lim
(q/ε)→∞

00̃(p, p′; ω̄) = 3̃∞(p, ω̄)
[
1 + U(q)S̃∞(ω̄)

]−1
U(q)3̃∞(p, ω̄)

(A8)

where3̃∞ and S̃∞ are the corresponding limits of̃3 and S̃.
Ward identities [19] can be invoked to yield

3̃∞(p, ω̄) = v∗
F

zk

( ∂kF/∂µ

0
1

)
(A9)

wherev∗
F = kF/m∗ is the Fermi velocity, andµ is the chemical potential. It should be

noted that the longitudinal current element vanishes because in the limit thatω̄ → 0 and
(q/ε) → ∞ we must haveq ⊥ k. Ward identities can also be used to calculate the
matrix [19]

S̃∞ = −2π i diag

[
∂n

∂µ
,

n

mb

,
n

mb

]
(A10)

wheremb is the bare band mass andn is the density. Using these relations in equation (A8)
we find

g(k, k) = 2π izkzk
00̃∞(k, k) (A11)

or

g(k, k) = −v∗
F

2 [
(∂kF/∂µ)2/(∂n/∂µ) + mb/n

]
. (A12)

Note that this relation holds for all interactionsv(q) ∼ q−α with α < 2.
Using the relation [19, 27]

g(k, k′) = f (k, k′) −
∫

dk′′

(2π)2
f (k, k′′)g(k′′, k′) δ(εk′′ − µ) (A13)

we derive

gl = 1

2π

∫ 2π

0
dθ g(θ)eilθ = fl

(2π/m∗) + fl

(A14)

and thus

g(θ = 0) = −v∗
F

2 [
(∂kF/∂µ)2(∂n/∂µ) + mb/n

]
(A15)

or

g(θ = 0) =
∞∑

l=−∞

fl

(2π/m∗) + fl

. (A16)

Finally, using the identities (57) and (56) along withk2
F = 4πn andv∗

F = kF/m∗ we obtain
∞∑

l = −∞
l 6=0,−1,1

fl

(2π/m∗) + fl

= −3. (A17)

Finally, we note that simple phenomenological derivations can be given for the sum
rules (A2) and (A17). Sincef0 is a local density–density interaction, the inclusion of the
Coulomb interaction is in some sense equivalent to takingf0 → f0 + v(q). As we takeq

to zero, this translates to the effective divergence off0. If we allow f0 to diverge in sum
rule equation (A1) we immediately obtain equation (A2).
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The derivation for equation (A17) proceeds along a similar line. The Chern–Simons
interaction as written in equation (17) is an interaction between transverse current and
density. Using current conservationωj0 = qjx we can write this as an interaction between
the transverse and the longitudinal currents (herex̂ is chosen to be the longitudinal direction).
We thus rewrite this interaction energy as

δE = j ∗Uj = 2π ĩφ

ω

[
j ∗
x jy − j ∗

y jx)
]
. (A18)

Such an interaction term can be represented in Fermi liquid theory by lettingf1 →
f1 + 2π iφ̃/ω and f−1 → f−1 − 2π iφ̃/ω. Note thatf1 being complex is a reflection
of the fact that the Chern–Simons interaction is not time-reversal invariant. Lettingω and
q both go to zero then leads to the effective divergence off0, f1 and f−1, thus yielding
equation (A17) from equation (A1).
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